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Abstract

In this paper, a class of fifth-order weighted essentially non-oscillatory (WENO) schemes based on Hermite poly-

nomials, termed HWENO (Hermite WENO) schemes, for solving one-dimensional nonlinear hyperbolic conservation

law systems is presented. The construction of HWENO schemes is based on a finite volume formulation, Hermite

interpolation, and nonlinearly stable Runge–Kutta methods. The idea of the reconstruction in the HWENO schemes

comes from the original WENO schemes, however both the function and its first derivative values are evolved in time

and used in the reconstruction, while only the function values are evolved and used in the original WENO schemes.

Comparing with the original WENO schemes of Liu et al. [J. Comput. Phys. 115 (1994) 200] and Jiang and Shu [J.

Comput. Phys. 126 (1996) 202], one major advantage of HWENO schemes is its compactness in the reconstruction. For

example, five points are needed in the stencil for a fifth-order WENO (WENO5) reconstruction, while only three points

are needed for a fifth-order HWENO (HWENO5) reconstruction. For this reason, the HWENO finite volume meth-

odology is more suitable to serve as limiters for the Runge–Kutta discontinuous Galerkin (RKDG) methods, than the

original WENO finite volume methodology. Such applications in one space dimension is also developed in this paper.
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1. Introduction

In this paper, we first construct a class of fifth-order weighted essentially non-oscillatory (WENO)
schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving

one-dimensional (1D) nonlinear hyperbolic conservation law systems

ut þ f ðuÞx ¼ 0;
uðx; 0Þ ¼ u0ðxÞ:

�
ð1:1Þ

We then apply this HWENO finite volume methodology as limiters for the Runge–Kutta discontinuous

Galerkin (RKDG) methods. Only 1D case is considered in this paper. While the methodology can be

generalized in principle to multi dimensions, more work is needed to carry out the detailed design and this is

left for future research.

WENO schemes have been designed in recent years as a class of high order finite volume or finite dif-

ference schemes to solve hyperbolic conservation laws with the property of maintaining both uniform high

order accuracy and an essentially non-oscillatory shock transition. The first WENO scheme is constructed
in [19] for a third-order finite volume version in one space dimension. In [17], third and fifth-order finite

difference WENO schemes in multi space dimensions are constructed, with a general framework for the

design of the smoothness indicators and nonlinear weights. Finite difference WENO schemes of higher

orders (seventh to 11th order) are constructed in [1], and finite volume versions on unstructured and

structured meshes are designed in, e.g. [13,16,18,21,24]. WENO schemes are designed based on the suc-

cessful ENO schemes in [15,27,28]. Both ENO and WENO schemes use the idea of adaptive stencils in the

reconstruction procedure based on the local smoothness of the numerical solution to automatically achieve

high order accuracy and a non-oscillatory property near discontinuities. ENO uses just one (optimal in
some sense) out of many candidate stencils when doing the reconstruction; while WENO uses a convex

combination of all the candidate stencils, each being assigned a nonlinear weight which depends on the

local smoothness of the numerical solution based on that stencil. WENO improves upon ENO in ro-

bustness, better smoothness of fluxes, better steady state convergence, better provable convergence prop-

erties, and more efficiency. For a detailed review of ENO and WENO schemes, we refer to the lecture notes

[26].

The framework of the finite volume and finite difference WENO schemes is to evolve only one degree of

freedom per cell, namely the cell average for the finite volume version or the point value at the center of the
cell for the finite difference version. High order accuracy is achieved through a WENO reconstruction which

uses a stencil of k cells for kth order accuracy. Thus a fifth-order WENO scheme would need the infor-

mation from five neighboring cells in order to reconstruct the numerical flux. There are efforts in the lit-

erature to design schemes using a narrower stencil to achieve the same order of accuracy, through the

evolution of more than one degree of freedom per cell. For example, non-negativity, monotonicity or

convexity preserving cubic and quintic Hermite interpolation is discussed in [12]; various CIP type schemes

based on Hermite type interpolations are developed in, e.g. [20,29], and a second-order TVD scheme

satisfying all entropy conditions, based on evolving both the cell average and the slope per cell, is designed
in [3]. In the first part of this paper we follow this line of research and construct a class of fifth-order WENO

schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving the 1D

nonlinear hyperbolic conservation law systems (1.1). The construction of HWENO schemes is based on a

finite volume formulation, Hermite interpolation, and nonlinearly stable Runge–Kutta methods. The idea

of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the

function and its first derivative values are evolved in time and used in the reconstruction, while only the

function values are evolved and used in the original WENO schemes. Comparing with the original WENO

schemes of Liu et al. [19] and Jiang and Shu [17], one major advantage of HWENO schemes is its
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compactness in the reconstruction. For example, five points are needed in the stencil for a fifth-order

WENO (WENO5) reconstruction, while only three points are needed for a fifth-order HWENO (HWE-

NO5) reconstruction.
The discontinuous Galerkin (DG) method can be considered as an extreme in the methodology de-

scribed above. It evolves k degrees of freedom (in one dimension) per cell for a kth order accurate scheme,

thus no reconstruction is needed. The first DG method was introduced in 1973 by Reed and Hill [23], in the

framework of neutron transport (steady state linear hyperbolic equations). A major development of the DG

method was carried out by Cockburn et al. in a series of papers [5–9], in which they established a

framework to easily solve nonlinear time dependent hyperbolic conservation laws (1.1) using explicit,

nonlinearly stable high order Runge–Kutta time discretizations [27] and DG discretization in space with

exact or approximate Riemann solvers as interface fluxes and TVB (total variation bounded) limiter [25] to
achieve non-oscillatory properties for strong shocks. These schemes are termed Runge–Kutta discontin-

uous Galerkin (RKDG) methods. For a review of RKDG methods, see [10].

An important component of RKDG methods for solving conservation laws (1.1) with strong shocks in

the solutions is a nonlinear limiter, which is applied to control spurious oscillations. Although many

limiters exist in the literature, e.g. [2,4–9], they tend to degenerate accuracy when mistakenly used in smooth

regions of the solution. In [22], we initialized a study of using WENO methodology as limiters for RKDG

methods. The idea is to first identify ‘‘troubled cells’’, namely those cells where limiting might be needed,

then to abandon all moments in those cells except the cell averages and reconstruct those moments from the
information of neighboring cells using a WENO methodology. This technique works quite well in our one

and two-dimensional (2D) test problems [22]. However, one place in the approach of [22] which would

welcome improvements is that the reconstruction for the moments in troubled cells has to use the cell

average information from 2k þ 1 neighboring cells, for (k þ 1)th order RKDG methods of piecewise

polynomials of degree k. This stencil is significantly wider than the original RKDG methodology. For this

reason, the HWENO finite volume method developed in this paper is more suitable to serve as limiters for

the RKDGmethods, since it uses much fewer neighboring cells to obtain a reconstruction of the same order

of accuracy. Such applications in one space dimension is also developed in this paper.
The organization of this paper is as follows. In Section 2, we describe in detail the construction and

implementation of HWENO schemes with Runge–Kutta time discretizations, for 1D scalar and system

equations (1.1). In Section 3, we investigate the usage of the HWENO finite volume methodology as

limiters for RKDG methods, following the idea in [22], with the goal of obtaining a robust and high order

limiting procedure to simultaneously obtain uniform high order accuracy and sharp, non-oscillatory shock

transition for RKDG methods. In Section 4 we provide extensive numerical examples to demonstrate the

behavior of the HWENO schemes and DG methods with HWENO limiters with Runge–Kutta time dis-

cretizations. Concluding remarks are given in Section 5.
2. The construction of Hermite WENO schemes

In this section we first consider 1D scalar conservation laws (1.1). For simplicity, we assume that the grid

points fxig are uniformly distributed with the cell size xiþ1 � xi ¼ Dx and cell centers xiþ1=2 ¼ 1
2
ðxi þ xiþ1Þ.

We also denote the cells by Ii ¼ ½xi�1=2; xiþ1=2�.
Let v ¼ ux and gðu; vÞ ¼ f 0ðuÞux ¼ f 0ðuÞv. From (1.1) and its spatial derivative we obtain

ut þ f ðuÞx ¼ 0; uðx; 0Þ ¼ u0ðxÞ;
vt þ gðu; vÞx ¼ 0; vðx; 0Þ ¼ v0ðxÞ:

�
ð2:1Þ

We denote the cell averages of u and v as
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uiðtÞ ¼
1

Dx

Z
Ii

uðx; tÞdx; viðtÞ ¼
1

Dx

Z
Ii

vðx; tÞdx:

Integrating (2.1) over the cell Ii we obtain an equivalent formulation of the conservation laws

duiðtÞ
dt ¼ � 1

Dx ðf ðuðxiþ1=2; tÞÞ � f ðuðxi�1=2; tÞÞÞ;
dviðtÞ
dt ¼ � 1

Dx ðgðuðxiþ1=2; tÞ; vðxiþ1=2; tÞÞ � gðuðxi�1=2; tÞ; vðxi�1=2; tÞÞÞ:

(
ð2:2Þ

We approximate (2.2) by the following conservative scheme

duiðtÞ
dt ¼ � 1

Dx ðf̂fiþ1=2 � f̂fi�1=2Þ;
dviðtÞ
dt ¼ � 1

Dx ðĝgiþ1=2 � ĝgi�1=2Þ;

(
ð2:3Þ

where the numerical fluxes f̂fiþ1=2 and ĝgiþ1=2 are defined by:

f̂fiþ1=2 ¼ h u�iþ1=2; u
þ
iþ1=2

� �
;

ĝgiþ1=2 ¼ H u�iþ1=2; u
þ
iþ1=2; v

�
iþ1=2; v

þ
iþ1=2

� �
;

ð2:4Þ

where u�iþ1=2 and v�iþ1=2 are numerical approximations to the point values of uðxiþ1=2; tÞ and vðxiþ1=2; tÞ re-

spectively from left and right. The fluxes in (2.4) are subject to the usual conditions for numerical fluxes,
such as Lipschitz continuity and consistency with the physical fluxes f ðuÞ and gðu; vÞ.

In this paper we use the following local Lax–Friedrichs fluxes:

hða; bÞ ¼ 1

2
½f ðaÞ þ f ðbÞ � aðb� aÞ�;

Hða; b; c; dÞ ¼ 1

2
½gða; cÞ þ gðb; dÞ � aðd � cÞ�;

ð2:5Þ

where a ¼ maxu2D jf 0ðuÞj, with D ¼ ½minða; bÞ;maxða; bÞ�.
The method of lines ODE (2.3) is then discretized in time by a TVD Runge–Kutta method in [27]. The

third-order version in [27] is used in this paper.

The first-order ‘‘building block’’ of this scheme can be obtained by using the cell averages ui and vi to
replace the point values u�iþ1=2, u

þ
i�1=2 and v�iþ1=2, v

þ
i�1=2 respectively, and using Euler forward for the time

discretization. The result is the following scheme

unþ1
i ¼ uni � k hðuni ; uniþ1Þ � hðuni�1; u

n
i Þ

� �
;

vnþ1
i ¼ vni � k H uni ; u

n
iþ1; v

n
i ; v

n
iþ1

� �
� H uni�1; u

n
i ; v

n
i�1; v

n
i

� �� ��
ð2:6Þ

with the numerical fluxes h and H defined by (2.5). Here k ¼ Dt=Dx. For this building block we have the

following total variation stability result, where for simplicity we assume a is a constant:

Proposition 2.1. The scheme (2.6), with the numerical fluxes h and H defined by (2.5) and under the CFL

condition ka6 1; satisfies

TV ðunþ1Þ6 TV ðunÞ; jjvnþ1jjL1 6 jjvnjjL1 ;

where the norms are defined by

TV ðuÞ �
X
i

juiþ1 � uij; jjvjjL1 �
X
i

jvijDx:
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Proof. The total variation diminishing property TV ðunþ1Þ6 TV ðunÞ is a consequence of the monotone

scheme satisfied by u, see for example [11]. We thus prove only the L1 stability result for v. By using def-

initions of the scheme (2.6) and the numerical fluxes (2.5) we obtain

1

Dx
jjvnþ1jjL1 ¼

X
i

uni

���� � k
2

f 0 uniþ1

� �
vniþ1

�
� f 0 uni�1

� �
vni�1 � a vniþ1

�
� 2vni þ vni�1

������
¼
X
i

ð1
���� � kaÞvni þ

k
2

a
�

� f 0 uniþ1

� ��
vniþ1 þ

k
2

a
�

þ f 0 uni�1

� ��
vni�1

����
6

X
i

ð1� kaÞ vni
�� ��þX

i

k
2

a
�

� f 0 uni
� ��

vni
�� ��þX

i

k
2

a
�

þ f 0 uni
� ��

vni
�� ��

¼
X
i

vni
�� �� ¼ 1

Dx
jjvnjjL1 :

Here, we have used the definition of a and the CFL condition ka6 1 in the inequality above and have

ignored boundary terms by assuming periodic or compact boundary conditions. �

Since v approximates the derivative of u, the L1 norm of v is equivalent to the total variation norm of u.
Thus the proposition indicates that the base first-order scheme is TVD, both in a direct measurement of the

total variation norm of u and in an indirect measurement of the total variation norm of u through the L1

norm of v. This gives us a solid foundation to build higher order schemes using this building block.

The key component of the HWENO schemes is the reconstruction, from the cell averages fui; vig to
the points values fu�iþ1=2; v

�
iþ1=2g. This reconstruction should be both high order accurate and essentially

non-oscillatory. We outline the procedure of this reconstruction for the fifth-order accuracy case in the

following.

Step 1. Reconstruction of fu�iþ1=2g by HWENO from the cell averages fui; vig.
1. Given the small stencils S0 ¼ fIi�1; Iig, S1 ¼ fIi; Iiþ1g and the bigger stencil T ¼ fS0; S1g, we construct

Hermite quadratic reconstruction polynomials p0ðxÞ; p1ðxÞ; p2ðxÞ and a fourth-degree reconstruction poly-

nomial qðxÞ such that:

1

Dx

Z
Iiþj

p0ðxÞdx ¼ uiþj; j ¼ �1; 0;
1

Dx

Z
Ii�1

p00ðxÞdx ¼ vi�1;
1

Dx

Z
Iiþj

p1ðxÞdx ¼ uiþj; j ¼ 0; 1;
1

Dx

Z
Iiþ1

p01ðxÞdx ¼ viþ1;
1

Dx

Z
Iiþj

p2ðxÞdx ¼ uiþj; j ¼ �1; 0; 1:
1

Dx

Z
Iiþj

qðxÞdx ¼ uiþj; j ¼ �1; 0; 1;
1

Dx

Z
Iiþj

q0ðxÞdx ¼ viþj; j ¼ �1; 1:

In fact, we only need the values of these polynomials at the cell boundary xiþ1=2 given in terms of the cell

averages, which have the following expressions:

p0ðxiþ1=2Þ ¼ � 7

6
ui�1 þ

13

6
ui �

2Dx
3

vi�1;
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p1ðxiþ1=2Þ ¼
1

6
ui þ

5

6
uiþ1 �

Dx
3
viþ1;
p2ðxiþ1=2Þ ¼ � 1

6
ui�1 þ

5

6
ui þ

1

3
uiþ1;
qðxiþ1=2Þ ¼ � 23

120
ui�1 þ

19

30
ui þ

67

120
uiþ1 � Dx

3

40
vi�1

�
þ 7

40
viþ1

�
:

2. We find the combination coefficients, also called linear weights, denoted by c0, c1 and c2, satisfying:

qðxiþ1=2Þ ¼
X2
j¼0

cjpjðxiþ1=2Þ

for all the cell averages of u and v in the bigger stencil T. This leads to

c0 ¼
9

80
; c1 ¼

21

40
; c2 ¼

29

80
:

3. We compute the smoothness indicator, denoted by bj, for each stencil Sj, which measures how smooth

the function pjðxÞ is in the target cell Ii. The smaller this smoothness indicator bj, the smoother the function
pjðxÞ is in the target cell. We use the same recipe for the smoothness indicator as in [17]

bj ¼
X2
l¼1

Z
Ii

Dx2l�1 ol

oxl
pjðxÞ

� �2

dx: ð2:7Þ

In the actual numerical implementation the smoothness indicators bj are written out explicitly as quadratic

forms of the cell averages of u and v in the stencil:

b0 ¼ ð�2ui�1 þ 2ui � Dxvi�1Þ2 þ
13

3
ð�ui�1 þ ui � Dxvi�1Þ2;
b1 ¼ ð�2ui þ 2uiþ1 � Dxviþ1Þ2 þ
13

3
ð�ui þ uiþ1 þ Dxviþ1Þ2;
b2 ¼
1

4
ð�ui�1 þ uiþ1Þ2 þ

13

12
ð�ui�1 þ 2ui � uiþ1Þ2:

4. We compute the nonlinear weights based on the smoothness indicators

xj ¼
xjP
k xk

; xk ¼
ck

ðeþ bkÞ
2
; ð2:8Þ

where ck are the linear weights determined in Step 1.2 above, and e is a small number to avoid the de-

nominator to become 0. We are using e ¼ 10�6 in all the computation in this paper. The final HWENO

reconstruction is then given by

u�iþ1=2 �
X2
j¼0

xjpjðxiþ1=2Þ: ð2:9Þ

The reconstruction to uþi�1=2 is mirror symmetric with respect to xi of the above procedure.
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Step 2. Reconstruction of the derivative values fv�iþ1=2g by HWENO from the cell averages fui; vig.
5. Given the small stencils S0 ¼ fIi�1; Iig, S1 ¼ fIi; Iiþ1g and the bigger stencil T ¼ fS0; S1g, we construct

Hermite cubic reconstruction polynomials p0ðxÞ; p1ðxÞ; p2ðxÞ and a fifth-degree reconstruction polynomial

qðxÞ such that:

1

Dx

Z
Iiþj

p0ðxÞdx ¼ uiþj;
1

Dx

Z
Iiþj

p00ðxÞdx ¼ viþj; j ¼ �1; 0;
1

Dx

Z
Iiþj

p1ðxÞdx ¼ uiþj;
1

Dx

Z
Iiþj

p01ðxÞdx ¼ viþj; j ¼ 0; 1;
1

Dx

Z
Iiþj

p2ðxÞdx ¼ uiþj; j ¼ �1; 0; 1;
1

Dx

Z
Ii

p02ðxÞdx ¼ vi;
1

Dx

Z
Iiþj

qðxÞdx ¼ uiþj;
1

Dx

Z
Iiþj

q0ðxÞdx ¼ viþj; j ¼ �1; 0; 1:

In fact, we only need the values of the derivative of these polynomials at the cell boundary xiþ1=2 given in

terms of the cell averages, which have the following expressions:

p00ðxiþ1=2Þ ¼
4

Dx
ðui�1 � uiÞ þ

3

2
vi�1 þ

7

2
vi;
p01ðxiþ1=2Þ ¼
2

Dx
ð�ui�1 þ uiÞ �

1

2
vi �

1

2
viþ1;
p02ðxiþ1=2Þ ¼
1

4Dx
ui�1ð � 4ui þ 3uiþ1Þ þ

1

2
vi;
q0ðxiþ1=2Þ ¼
1

Dx
1

4
ui�1

�
� 2ui þ

7

4
uiþ1

�
þ 1

12
vi�1 �

1

6
vi �

5

12
viþ1:

6. Compute linear weights c00, c
0
1 and c02, satisfying

q0ðxiþ1=2Þ ¼
X2
j¼0

c0jp
0
jðxiþ1=2Þ

for all the cell averages of u and v in the bigger stencil T. This leads to

c00 ¼
1

18
; c01 ¼

5

6
; c02 ¼

1

9
:

7. We define the smoothness indicators for the reconstruction of derivatives as

bj ¼
X3
l¼2

Z
Ii

ðDxÞð2l�1Þ ol

oxl
pjðxÞ

� �2

dx: ð2:10Þ
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Notice that the summation starts from the second derivative rather than from the first, as we are now

reconstructing the first derivative rather than the function values. We can again write these smoothness

indicators out explicitly as quadratic forms of the cell averages of u and v in the stencil:

b0 ¼ 4ð3ðui�1 � uiÞ þ Dxðvi�1 þ 2viÞÞ2 þ
39

4
ð2ðui�1 � uiÞ þ Dxðvi�1 þ viÞÞ2;
b1 ¼ 4ð�3ðui � uiþ1Þ � Dxð2vi þ viþ1ÞÞ2 þ
39

4
ð2ðui � uiþ1Þ þ Dxðvi þ viþ1ÞÞ2;
b2 ¼ ðui�1 � 2ui þ uiþ1Þ2 þ
39

16
ðuiþ1 � ui�1 � 2DxviÞ2:

8. We compute the nonlinear weights by

xj ¼
xjP
k xk

; xk ¼
c0k

ðeþ bkÞ
2
: ð2:11Þ

The final HWENO reconstruction to v�iþ1=2 is then given by

v�iþ1=2 �
X2
j¼0

xjp0jðxiþ1=2Þ: ð2:12Þ

The reconstruction to vþi�1=2 is mirror symmetric with respect to xi of the above procedure. �

We remark that a more natural procedure would have been using the same small stencils and lower order

polynomials in both Step 1 and Step 2 above, which would have saved computational time as the costly

smoothness indicators would have to be computed only once. Unfortunately this does not work as suitable

linear weights do not exist in Step 2.2 above for such choices.
For systems of conservation laws, such as the Euler equations of gas dynamics, both of the recon-

structions from fui; vig to fu�iþ1=2g and fv�iþ1=2g are performed in the local characteristic directions to avoid

oscillation. For details of such local characteristic decompositions, see, e.g. [26].
3. HWENO reconstruction as limiters for the discontinuous Galerkin method

In [22], we have started the study of using WENO reconstruction methodology as limiters for the RKDG

methods. The first step in the procedure is to identify the ‘‘troubled cells’’, namely those cells which might

need the limiting procedure. In [22] as well as in this paper, we use the usual minmod type TVB limiters as in

[5,7,9]. That is, whenever the minmod limiter changes the slope, the cell is declared to be a troubled cell.

This identification of troubled cells is not optimal. Often smooth cells, especially those near smooth ex-
trema, are mistakenly identified as troubled cells. However, the idea of using WENO reconstructions in

those cells is to maintain high order accuracy even if smooth cells are mistaken as troubled cells. The second

step is to replace the solution polynomials in the troubled cells by reconstructed polynomials which

maintain the original cell averages (for conservation), have the same order of accuracy as before, but are

less oscillatory. In [22], regular finite volume type WENO reconstruction based on cell averages of

neighbors is used for the second step. In this section, we apply the HWENO reconstruction procedure

developed in the previous section for the second step, which reduces the stencil of the reconstruction while

maintaining the same high order accuracy.
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The DG solution as well as the test function space is given by V k
h ¼ fp : pjIi 2 PkðIiÞg, where PkðIiÞ is the

space of polynomials of degree 6 k on the cell Ii. We adopt a local orthogonal basis over Ii,
fvðiÞl ðxÞ; l ¼ 0; 1; . . . ; kg, namely the scaled Legendre polynomials

vðiÞ0 ðxÞ ¼ 1; vðiÞ1 ðxÞ ¼ x� xi
Dxi

; vðiÞ2 ðxÞ ¼ x� xi
Dxi

� �2

� 1

12
; . . .

Then the numerical solution uhðx; tÞ in the space V k
h can be written as

uhðx; tÞ ¼
Xk
l¼0

uðlÞi ðtÞvðiÞl ðxÞ for x 2 Ii ð3:1Þ

and the degrees of freedom uðlÞi ðtÞ are the moments defined by

uðlÞi ðtÞ ¼ 1

al

Z
Ii

uhðx; tÞvðiÞl ðxÞdx; l ¼ 0; 1; . . . ; k;

where al ¼
R
Ii
ðvðiÞl ðxÞÞ2 dx are the normalization constants since the basis is not orthonormal. In order to

determine the approximate solution, we evolve the degrees of freedom uðlÞi

d

dt
uðlÞi þ 1

al

�
�
Z
Ii

f ðuhðx; tÞÞ d

dx
vðiÞl ðxÞdxþ f̂f u�iþ1=2; u

þ
iþ1=2

� �
vðiÞl ðxiþ1=2Þ

� f̂f u�i�1=2; u
�
iþ1=2

� �
vðiÞl ðxi�1=2Þ

�
¼ 0; l ¼ 0; 1; . . . ; k; ð3:2Þ

where u�iþ1=2 ¼ uhðx�iþ1=2; tÞ are the left and right limits of the discontinuous solution uh at the cell interface

xiþ1=2, f̂f ðu�; uþÞ is a monotone flux (non-decreasing in the first argument and non-increasing in the second

argument) for the scalar case and an exact or approximate Riemann solver for the system case. The

semidiscrete scheme (3.2) is discretized in time by a nonlinearly stable Runge–Kutta time discretization, e.g.
the third-order version in [27]. The integral term in (3.2) can be computed either exactly or by a suitable

numerical quadrature accurate to at least OðDxkþlþ2Þ.
The limiter adopted in [7] is described below in some detail, as it is the one used in [22] and in this paper

to detect ‘‘troubled cells’’. Denote

u�iþ1=2 ¼ uð0Þi þ ~uui; uþi�1=2 ¼ uð0Þi � ~~uu~uui

From (3.1) we can see that

~uui ¼
Xk
l¼1

uðlÞi vðiÞl ðxiþ1=2Þ; ~~uu~uui ¼ �
Xk
l¼1

uðlÞi vðiÞl ðxi�1=2Þ:

These are modified by either the standard minmod limiter [14]

~uuðmodÞ
i ¼ m ~uui;Dþu

ð0Þ
i ;D�u

ð0Þ
i

� �
; ~~uu~uuðmodÞ

i ¼ mð~~uu~uui;Dþu
ð0Þ
i ;D�u

ð0Þ
i Þ;

where m is given by

mða1; a2; . . . ; anÞ ¼
s �min16 j6 n jajj if signða1Þ ¼ signða2Þ ¼ � � � ¼ signðanÞ ¼ s;
0 otherwise

�
ð3:3Þ

or by the TVB modified minmod function [25]
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~mmða1; a2; . . . ; anÞ ¼ a1 if ja1j6MDx2;
mða1; a2; . . . ; anÞ otherwise;

�
ð3:4Þ

where M > 0 is a constant. The choice of M depends on the solution of the problem. For scalar problems it

is possible to estimate M by the initial condition as in [7] (M is proportional to the second derivative of the

initial condition at smooth extrema), however it is more difficult to estimate M for the system case. If M is

chosen too small, accuracy may degenerate at smooth extrema of the solution; however if M is chosen too
large, oscillations will appear.

In [22] and in this paper we use the limiter described above to identify ‘‘troubled cells’’, namely, if one of

the minmod functions gets enacted (returns other than the first argument), this cell is declared ‘‘troubled’’

and marked for further reconstructions. Since the HWENO reconstruction maintains the high order ac-

curacy in the troubled cells, it is less crucial to choose an accurate M . We present in Section 3 numerical

results obtained with different M �s. Basically, if M is chosen too small, more good cells will be declared as

troubled cells and will be subject to unnecessary HWENO reconstructions. This does increase the com-

putational cost but does not degrade the order of accuracy in these cells.
For the troubled cells, we would like to reconstruct the polynomial solution while retaining its cell

average. In other words, we will reconstruct the degrees of freedom, or the moments, uðlÞi for the troubled

cell Ii for l ¼ 1; . . . ; k and retain only the cell average uð0Þi .

For the third-order k ¼ 2 case, we summarize the procedure to reconstruct the first and second moments

uð1Þi and uð2Þi for a troubled cell Ii using HWENO:

Step 1. Reconstruction of the first moment uð1Þi by HWENO.

1. Given the small stencils S0 ¼ fIi�1; Iig, S1 ¼ fIi; Iiþ1g and the bigger stencil T ¼ fS0; S1g, we construct
Hermite quadratic reconstruction polynomials p0ðxÞ; p1ðxÞ; p2ðxÞ and a fourth-degree reconstruction poly-
nomial qðxÞ such that:Z

Iiþj

p0ðxÞdx ¼ uð0Þiþja0; j ¼ �1; 0;

Z
Ii�1

p0ðxÞvði�1Þ
1 ðxÞdx ¼ uð1Þi�1a1;
Z
Iiþj

p1ðxÞdx ¼ uð0Þiþja0; j ¼ 0; 1;

Z
Iiþ1

p1ðxÞvðiþ1Þ
1 ðxÞdx ¼ uð1Þiþ1a1;
Z
Iiþj

p2ðxÞdx ¼ uð0Þiþja0; j ¼ �1; 0; 1;
Z
Iiþj

qðxÞdx ¼ uð0Þiþja0; j ¼ �1; 0; 1;

Z
Iiþj

qðxÞvðiþjÞ
1 ðxÞdx ¼ uð1Þiþja1; j ¼ �1; 1:

We now obtain:Z
Ii

p0ðxÞvðiÞ1 ðxÞdx ¼ a1
�
� 2uð0Þi�1 þ 2uð0Þi � uð1Þi�1

�
;

Z
Ii

p1ðxÞvðiÞ1 ðxÞdx ¼ a1
�
� 2uð0Þi þ 2uð0Þiþ1 � uð1Þiþ1

�
;

Z
Ii

p2ðxÞvðiÞ1 ðxÞdx ¼ a1
�
� uð0Þi�1 þ uð0Þiþ1

�.
2;
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Z
Ii

qðxÞvðiÞ1 ðxÞdx ¼ al
15

19
uð0Þi�1

��
� uð0Þiþ1

�
� 11

38
uð1Þi�1

�
þ uð1Þiþ1

��
:

2. We find the combination coefficients, also called linear weights, denoted by c0, c1 and c2, satisfying:Z
Ii

qðxÞvðiÞ1 ðxÞdx ¼
X2
j¼0

cj

Z
Ii

pjðxÞvðiÞ1 ðxÞdx;

which leads to

c0 ¼
11

38
; c1 ¼

11

38
; c2 ¼

8

19
:

3. We compute the smoothness indicator bj by (2.7), and the nonlinear weights based on the smoothness

indicators by (2.8). The first moment of the reconstructed polynomial is then given by

uð1Þi ¼ 1

a1

X2
j¼0

xj

Z
Ii

pjðxÞvðiÞ1 ðxÞdx: ð3:5Þ

Step 2. Reconstruction of the second moment uð2Þi by HWENO. When the first moment uð1Þi is needed we

use the reconstructed one from Step 1.

4. Given the small stencils S0 ¼ fIi�1; Iig, S1 ¼ fIi; Iiþ1g and the bigger stencil T ¼ fS0; S1g, we construct
Hermite cubic reconstruction polynomials p0ðxÞ; p1ðxÞ; p2ðxÞ and a fifth-degree reconstruction polynomial
qðxÞ such that:

Z
Iiþj

p0ðxÞdx ¼ uð0Þiþja0;
Z
Iiþj

p0ðxÞvðiþjÞ
1 ðxÞdx ¼ uð1Þiþja1; j ¼ �1; 0;
Z
Iiþj

p1ðxÞdx ¼ uð0Þiþja0;
Z
Iiþj

p1ðxÞvðiþjÞ
1 ðxÞdx ¼ uð1Þiþja1; j ¼ 0; 1;
Z
Iiþj

p2ðxÞdx ¼ uð0Þiþja0; j ¼ �1; 0; 1;

Z
Ii

p2ðxÞvðiÞ1 dx ¼ uð1Þi a1;
Z
Iiþj

qðxÞdx ¼ uð0Þiþja0;
Z
Iiþj

qðxÞvðiþjÞ
1 ðxÞdx ¼ uð1Þiþja1; j ¼ �1; 0; 1;

which lead toZ
Ii

p0ðxÞvðiÞ2 ðxÞdx ¼ a2
15

4
uð0Þi�1

�
� 15

4
uð0Þi þ 11

8
uð1Þi�1 þ

19

8
uð1Þi

�
;

Z
Ii

p1ðxÞvðiÞ2 ðxÞdx ¼ a2

�
� 15

4
uð0Þi þ 15

4
uð0Þiþ1 �

19

8
uð1Þi � 11

8
uð1Þiþ1

�
;

Z
I
p2ðxÞvðiÞ2 ðxÞdx ¼ a2

1

2
uð0Þi�1

�
� uð0Þi þ 1

2
uð0Þiþ1

�
;

i
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Z
Ii

qðxÞvðiÞ2 dx ¼ a2
73

56
uð0Þi�1

�
� 73

28
uð0Þi þ 73

56
uð0Þiþ1 þ

45

112
uð1Þi�1 �

45

112
uð1Þiþ1

�
:

5. We find the linear weights denoted by c0, c1 and c2 satisfying

Z
Ii

qðxÞvðiÞ2 dxðxÞ ¼
X2
j¼0

cj

Z
Ii

pjðxÞvðiÞ2 ðxÞdx;

which leads to

c0 ¼
45

154
; c1 ¼

45

154
; c2 ¼

32

77
:

6. We compute the smoothness indicator bj by (2.10). The nonlinear weights are then computed based on

the smoothness indicators using (2.8). The second moment of the reconstructed polynomial is then given by

uð2Þi ¼ 1

a2

X2
j¼0

xj

Z
Ii

pjðxÞvðiÞ2 ðxÞdx: � ð3:6Þ
4. Numerical results

In this section we present the results of our numerical experiments for the fifth-order HWENO schemes

with the third-order TVD Runge–Kutta method (HWENO5-RK3) and the third-order DG method with

HWENO limiter (DG3-HWENO5-RK3) developed in the previous sections, and compare them with the

fifth-order finite volume WENO schemes in [26] and DG3 with TVB limiter [7]. A uniform mesh with N
cells is used for all the test cases, the CFL number is taken as 0.8 for both HWENO5 and WENO5, and

0.18 for DG3-HWENO5-RK3 except for some accuracy tests where a suitably reduced time step is used to

guarantee that spatial error dominates.

4.1. Accuracy tests

We first test the accuracy of the schemes on nonlinear scalar problems and nonlinear systems. In the

accuracy tests the TVB constantM is taken as 0.01 (very close to a TVD limiter) for identifying the troubled

cells in order to test the effect of the HWENO reconstruction for wrongly identified troubled cells in smooth

regions.
Example 4.1. We solve the following nonlinear scalar Burgers equation

ut þ
u2

2

� �
x

¼ 0 ð4:1Þ

with the initial condition uðx; 0Þ ¼ 0:5þ sinðpxÞ, and a 2-periodic boundary condition. When t ¼ 0:5=p the

solution is still smooth, and the errors and numerical orders of accuracy by the HWENO5-RK3 scheme

and by the WENO5-RK3 scheme [26] are shown in Table 1. We can see that both HWENO5-RK3 and

WENO5-RK3 schemes achieve their designed order of accuracy, and HWENO5-RK3 produces smaller



Table 1

Burgers equation ut þ ðu2=2Þx ¼ 0 with initial condition uðx; 0Þ ¼ 0:5þ sinðpxÞ
N HWENO5-RK3 WENO5-RK3

L1 error Order L1 error Order L1 error Order L1 error Order

10 5.06E) 03 1.79E) 02 8.42E) 03 2.67E) 02

20 4.93E) 04 3.36 3.33E) 03 2.43 1.04E) 03 3.02 7.09E) 03 1.91

40 3.65E) 05 3.76 3.24E) 04 3.36 8.86E) 05 3.55 7.47E) 04 3.25

80 1.61E) 06 4.51 1.51E) 05 4.43 4.17E) 06 4.41 4.09E) 05 4.19

160 6.25E) 08 4.68 5.49E) 07 4.78 1.67E) 07 4.64 1.44E) 06 4.82

320 1.86E) 09 5.07 2.06E) 08 4.74 5.14E) 09 5.02 4.66E) 08 4.95

HWENO5-RK3 and WENO5-RK3. t ¼ 0:5=p. L1 and L1 errors. Uniform meshes with N cells.
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errors than WENO5-RK3 for the same mesh. Notice, however, that HWENO5-RK3 is almost twice as

costly as WENO5-RK3 for the same mesh, as two reconstructions are involved for HWENO instead of just

one for WENO. The results for DG3-HWENO5-RK3 and DG3-RK3 with no limiter are shown in Table 2.
We can see that both schemes achieve their designed order of accuracy with comparable errors for the same

mesh.

Example 4.2. We solve the following nonlinear system of Euler equations

ut þ f ðuÞx ¼ 0 ð4:2Þ

with

u ¼ ðq; qv;EÞT; f ðuÞ ¼ ðqv; qv2 þ p; vðE þ pÞÞT:

Here q is the density, v is the velocity, E is the total energy, p is the pressure, which is related to the total

energy by E ¼ p=c� 1þ 1=2qv2 with c ¼ 1:4. The initial condition is set to be qðx; 0Þ ¼ 1þ 0:2 sinðpxÞ,
vðx; 0Þ ¼ 1, pðx; 0Þ ¼ 1, with a 2-periodic boundary condition. The exact solution is qðx; tÞ ¼ 1þ
0:2 sinðpðx� tÞÞ, vðx; tÞ ¼ 1, pðx; tÞ ¼ 1. We compute the solution up to t ¼ 2. The errors and numerical

orders of accuracy of the density q for the HWENO5-RK3 scheme are shown in Table 3, in comparison

with the results of WENO5-RK3 in [26]. We can see that both schemes achieve their designed order of
accuracy, and HWENO5-RK3 is more accurate than WENO5-RK3 on the same mesh. The results for

DG3-HWENO5-RK3 and DG3-RK3 with no limiter are shown in Table 4. We can see that both schemes

achieve their designed order of accuracy, however DG3-HWENO5-RK3 has larger errors for the same

mesh.
Table 2

Burgers equation ut þ ðu2=2Þx ¼ 0 with initial condition uðx; 0Þ ¼ 0:5þ sinðpxÞ
N DG with HWENO limiter DG with no limiter

L1 error Order L1 error Order L1 error Order L1 error Order

10 1.41E) 02 8.09E) 02 3.35E) 03 2.21E) 02

20 1.12E) 03 3.66 7.09E) 03 3.51 4.00E) 04 3.07 3.59E) 03 2.62

40 7.99E) 05 3.81 5.78E) 04 3.62 5.11E) 05 2.97 5.78E) 04 2.64

80 8.34E) 06 3.26 8.26E) 05 2.81 6.46E) 06 2.98 8.26E) 05 2.81

160 9.97E) 07 3.06 1.14E) 05 2.86 8.14E) 07 2.99 1.14E) 05 2.86

320 1.22E) 07 3.03 1.50E) 06 2.92 1.02E) 07 2.99 1.50E) 06 2.92

DG3-HWENO5-RK3 and DG3-RK3 with no limiters. t ¼ 0:5=p. L1 and L1 errors. Uniform meshes with N cells.



Table 3

Euler equations. qðx; 0Þ ¼ 1þ 0:2 sinðpxÞ, vðx; 0Þ ¼ 1, pðx; 0Þ ¼ 1

N HWENO5-RK3 WENO5-RK3

L1 error Order L1 error Order L1 error Order L1 error Order

10 3.33E) 03 5.10E) 03 6.63E) 03 5.92E) 03

20 1.28E) 04 4.70 2.43E) 04 4.39 3.04E) 04 4.45 2.91E) 04 4.35

40 3.82E) 06 5.07 7.34E) 06 5.05 9.08E) 06 5.06 9.19E) 06 4.99

80 1.17E) 07 5.02 2.30E) 07 5.00 2.80E) 07 5.02 2.95E) 07 4.96

160 3.62E) 09 5.02 6.54E) 09 5.14 8.72E) 09 5.00 8.67E) 09 5.09

320 1.08E) 10 5.06 1.85E) 10 5.14 2.71E) 10 5.01 2.45E) 10 5.15

HWENO5-RK3 and WENO5-RK3 using N equally spaced cells. t ¼ 2. L1 and L1 errors of density q.

Table 4

Euler equations. qðx; 0Þ ¼ 1þ 0:2 sinðpxÞ, vðx; 0Þ ¼ 1, pðx; 0Þ ¼ 1

N DG with HWENO limiter DG with no limiter

L1 error Order L1 error Order L1 error Order L1 error Order

10 2.79E) 03 4.51E) 03 1.41E) 05 2.17E) 05

20 1.05E) 04 4.73 4.46E) 04 3.34 8.14E) 07 4.11 1.29E) 06 4.08

40 2.31E) 05 2.18 4.51E) 05 3.31 7.06E) 08 3.53 1.11E) 07 3.54

80 3.27E) 06 2.82 5.36E) 06 3.07 7.84E) 09 3.17 1.23E) 08 3.17

160 4.21E) 07 2.96 6.98E) 07 2.94 9.49E) 10 3.05 1.49E) 09 3.05

320 5.30E) 08 2.99 9.87E) 08 2.82 1.18E) 10 3.01 1.85E) 10 3.01

DG3-HWENO5-RK3 and DG3-RK3 with no limiter, using N equally spaced cells. t ¼ 2. L1 and L1 errors of density q.
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4.2. Test cases with shocks

Example 4.3. We solve the same nonlinear Burgers equation (4.1) as in Example 4.1 with the same initial

condition uðx; 0Þ ¼ 0:5þ sinðpxÞ, except that we now plot the results at t ¼ 1:5=p when a shock has already

appeared in the solution. In Fig. 1, the solutions of HWENO5-RK3 (left) and DG3-HWENO5-RK3 (right)

with N ¼ 80 cells are shown. The solid line is the exact solution. We can see that both schemes give non-

oscillatory shock transitions for this problem.

Example 4.4. We solve the nonlinear non-convex scalar Buckley–Leverett problem

ut þ
4u2

4u2 þ ð1� uÞ2

 !
x

¼ 0 ð4:3Þ

with the initial data u ¼ 1 when � 1
2
6 x6 0 and u ¼ 0 elsewhere. The solution is computed up to t ¼ 0:4.

The exact solution is a shock-rarefaction-contact discontinuity mixture. We remark that some high order

schemes may fail to converge to the correct entropy solution for this problem. In Fig. 2, the solutions of
HWENO5-RK3 (left) and DG3-HWENO5-RK3 (right) with N ¼ 80 cells are shown. The solid line is the

exact solution. We can see that both schemes give good resolutions to the correct entropy solution for this

problem.

Example 4.5. We solve the Euler equations (4.2) with a Riemann initial condition for the Lax Problem

ðq; v; pÞ ¼ ð0:445; 0:698; 3:528Þ for x6 0; ðq; v; pÞ ¼ ð0:5; 0; 0:571Þ for x > 0:
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Fig. 2. The Buckley–Leverett problem. t ¼ 0:4. HWENO5-RK3 (left) and DG3-HWENO5-RK3 (right) with N ¼ 80 cells. Solid line:

exact solution; squares: computed solution.
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Fig. 1. Burgers equation. uðx; 0Þ ¼ 0:5þ sinðpxÞ. t ¼ 1:5=p. HWENO5-RK3 (left) and DG3-HWENO5-RK3 (right) with N ¼ 80 cells.

Solid line: exact solution; squares: computed solution.
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The computed density q is plotted at t ¼ 1:3 against the exact solution. In Fig. 3 we plot the solution with
N ¼ 200 cells by HWENO5-RK3 and WENO5-RK3, and in Fig. 4 we show the results of the DG3-

HWENO5-RK3 scheme with different TVB constants M in identifying the troubled cells, with the time

history of cells being identified as troubled cells shown in Fig. 5. We can see that both HWENO5-RK3 and

DG3-HWENO5-RK3 give equally good non-oscillatory shock transitions for this problem, and the pa-

rameter M has a significant effect in determining how many cells are identified as troubled cells. This in-

dicates a need for better strategy for identifying troubled cells, which we plan to investigate in the future.



Fig. 3. The Lax problem. t ¼ 1:3. HWENO5-RK3 (left) and WENO5-RK3 (right), N ¼ 200 cells. Density q. Solid line: exact solution;

squares: computed solution.

x

D
en

si
ty

-5 -3 -1 1 3 5

0.6

1

1.4

x

D
en

si
ty

-5 -3 -1 1 3 5

0.6

1

1.4

x

D
en

si
ty

-5 -3 -1 1 3 5

0.6

1

1.4

Fig. 4. Lax problem by DG3-HWENO5-RK3 with 200 cells, with the TVB constant M ¼ 0:01 (left), M ¼ 10:0 (middle) and M ¼ 50

(right). t ¼ 1:3. Density q. Squares are the computed solution and solid lines are the exact solution.
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Fig. 5. Lax problem by DG3-HWENO5-RK3 with 200 cells, with the TVB constant M ¼ 0:01 (left), M ¼ 10:0 (middle) and M ¼ 50

(right). t ¼ 1:3. Time history of troubled cells. Squares are the troubled cells where the HWENO limiters are used.
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Example 4.6. The previous examples contain only shocks and simple smooth region solutions (almost

piecewise linear), for which shock resolution is the main concern and usually a good second-order non-

oscillatory scheme would give satisfactory results. There is little advantage in using higher order schemes

for such cases. We have been using them in the numerical experiments mainly to demonstrate the non-
oscillatory properties of the high order schemes. A higher order scheme would show its advantage when the

solution contains both shocks and complex smooth region structures. A typical example for this is the

problem of shock interaction with entropy waves [28]. We solve the Euler equations (4.2) with a moving

Mach¼ 3 shock interacting with sine waves in density, i.e. initially

ðq; v; pÞ ¼ ð3:857143; 2:629369; 10:333333Þ for x < �4;
ðq; v; pÞ ¼ ð1þ e sin 5x; 0; 1Þ for xP� 4:

Here we take e ¼ 0:2. The computed density q is plotted at t ¼ 1:8 against the reference solution, which is a

converged solution computed by the fifth-order finite difference WENO scheme [17] with 2000 grid points.

In Fig. 6 we show the results of the HWENO5-RK3 and WENO5-RK3 schemes with N ¼ 300 cells, and

in Figs. 7 and 8 we show the results of the DG3-HWENO5-RK3 scheme with N ¼ 200 cells and the time

history of trouble cells where HWENO limiters are used. We can see that the N ¼ 200 results for DG3-
HWENO5-RK3 with a higher value of M are comparable with the HWENO5-RK3 or WENO5-RK3

results with N ¼ 300 cells.

Example 4.7. We consider the interaction of blast waves of Euler equation (4.2) with the initial condition

ðq; v; pÞ ¼ ð1; 0; 1000Þ for 06 x < 0:1;
ðq; v; pÞ ¼ ð1; 0; 0:01Þ for 0:16 x < 0:9;
ðq; v; pÞ ¼ ð1; 0; 100Þ for 0:96 x:
Fig. 6. The shock density wave interaction problem. t ¼ 1:8. HWENO5-RK3 (left) and WENO5-RK3 (right) with N ¼ 300 cells.

Density q. Solid line: ‘‘Exact solution’’; squares: computed solution.
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Fig. 7. The shock density wave interaction problem by DG3-HWENO5-RK3 with 200 cells, t ¼ 1:8, with TVB constant M ¼ 0:01

(left), M ¼ 50:0 (middle) and M ¼ 300 (right). Density q. Solid line: ‘‘Exact solution’’; squares: computed solution.
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Fig. 8. The shock density wave interaction problem by DG3-HWENO5-RK3 with 200 cells, t ¼ 1:8, with TVB constant M ¼ 0:01

(left),M ¼ 50:0 (middle) andM ¼ 300 (right). Time history of troubled cells. Squares are the troubled cells where the HWENO limiters

are used.
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Fig. 9. The interaction of blast waves problem by HWENO5-RK3 (left) and WENO5-RK3 (right) with 400 cells, t ¼ 0:038. Density q.
Squares are the computed solution and solid lines are the ‘‘exact’’ reference solution.
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Fig. 10. The interaction of blast waves problem by DG3-HWENO5-RK3 with 400 cells, t ¼ 0:038, with the TVB constant M ¼ 0:01

(left), M ¼ 50:0 (middle) and M ¼ 300 (right). Density q. Squares are the computed solution and solid lines are the ‘‘exact’’ reference

solution.
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Fig. 11. The interaction of blast waves problem by DG3-HWENO5-RK3 with 400 cells, t ¼ 0:038, with the TVB constant M ¼ 0:01

(left),M ¼ 50:0 (middle) andM ¼ 300 (right). Time history of troubled cells. Squares are the troubled cells where the HWENO limiters

are used.
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A reflecting boundary condition is applied to both ends. See [15,30]. The computed density q is plotted at

t ¼ 0:038 against the reference ‘‘exact’’ solution, which is a converged solution computed by the fifth-order

finite difference WENO scheme [17] with 2000 grid points.

In Fig. 9 we show the results of the HWENO5-RK3 and WENO5-RK3 schemes with N ¼ 400 cells, and

in Figs. 10 and 11 we show the results of the DG3-HWENO5-RK3 scheme with N ¼ 400 cells as well as the

time history of troubled cells where HWENO limiters are used.
5. Concluding remarks

In this paper, we have constructed a new class the fifth-order WENO schemes, which we termed

HWENO (Hermite WENO) schemes, for solving nonlinear hyperbolic conservation law systems. The

construction of HWENO schemes is based on a finite volume formulation, Hermite interpolation, and

Runge–Kutta methods. The idea of reconstruction for HWENO comes from the WENO schemes. In the

HWENO schemes, both the function and its first derivative are evolved in time and used in the recon-
struction, in contrast to the regular WENO schemes where only the function value is evolved in time and

used in the reconstruction. Comparing with the regular WENO schemes, one major advantage of HWENO

schemes is their relatively compact stencil. This makes HWENO schemes more suitable for limiters in the
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Runge–Kutta discontinuous Galerkin methods, the application of this is also presented in this paper.

Extensive numerical experiments are performed to verify the accuracy and non-oscillatory shock resolution

of both the HWENO scheme and the RKDG method with HWENO limiters. Only the 1D case is con-
sidered in this paper. While the methodology can be generalized in principle to multi dimensions, more

work is needed to carry out the detailed design and this is left for future research.
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